5. Hamiltonian simulation (LCU): pt.1

Linear Combination of Unitaries

Isaac H. Kim (UC Davis)

Recap

e'urt
F

- QPE is very useful for
	- ❖ energy estimation
	- ❖ ground state preparation
	- QPE cost $\approx 1/\epsilon$ times Hamiltonian simulation cost for a unit time.
- Better Hamiltonian simulation \rightarrow Better time-evolution simulation, energy estimation, ground state preparation, …
- Trotter-Suzuki: An efficient algorithm for Hamiltonian simulation on a quantum computer

Post-Trotter methods

- Hamiltonian simulation from Trotter-Suzuki decomposition was first proposed by Lloyd (1996).
- In the 2010s, many new ideas appeared. They are interesting, because they come with a better complexity bound than the Trotter-Suzuki method.
- Strangely, many of these algorithms attempt to approximate e^{-iHt} by a *non-unitary operation*.
- We will talk about one such method, known as the LCU(=linear combination of unitaries).

Basic intuition

- What we want: $|\psi\rangle \rightarrow |\psi'\rangle = e^{-iHt}|\psi\rangle$.
- What we do: $|\psi\rangle|0\rangle \rightarrow \sqrt{p}|\widetilde{\psi'}\rangle|$ Success $\rangle + \sqrt{1-p}$ | Fail \rangle , where by applying a linear combination of unitaries (LCU). [Childs and Wiebe (2012)] $|\psi\rangle|0\rangle \rightarrow \sqrt{p} |\widetilde{\psi}\rangle$ | Success $\rangle + \sqrt{1-p} |Fail\rangle$, $|\widetilde{\psi}\rangle \approx |\psi'\rangle,$
- Then we "boost" the success probability to 1.

$$
Messine the 2nd restsfor \t\n[14^{\circ} > 14^{\circ} > 14^{\circ} \t\n[14^{\circ} > 14^{\circ} \t\n[14^{\circ
$$

Toy example 1

• Suppose we want to apply an arbitrary 2×2 matrix on a qubit, using a unitary quantum circuit. What can we do?

A: 2x2 most
\n
$$
| \psi \rangle
$$
 : 1-44't state
\n $| \psi \rangle \rightarrow A| \psi \rangle / || A| \psi \rangle ||$ ($|| | \psi \rangle || = \sqrt{\langle \phi | \phi \rangle}$)
\nFor: A = 22 I + 2x X + 2x Y + 2x Z
\n $| \phi \rangle$ [1), 1X > 1Y > 12
\n $| \phi \rangle$ [2)
\n $| \phi \rangle$ [3] 1X $| \psi \rangle$ [4] 2X
\n $| \phi \rangle$ [3] 1X $| \psi \rangle$ [4] 2X
\n $| \phi \rangle$ [4] 1X $| \psi \rangle$ [5] 1X $| \psi \rangle$ [6]

 $\bigcup \{\mathbb{Z}/|\Psi\rangle \cong \ |\not\supset \mathbb{Z}|\ \Psi\rangle$ $\frac{1}{\sqrt{4h}}$ measure $\left|\frac{4}{h}\right\rangle$ $dx|\psi\rangle + dxX|\psi\rangle + dx$ 114) + 2214)

 $\frac{1}{2}[27|15x|+51+x2|)(d_1|15|4) + d_x|15x|4$ + $d_x|15x|4$ + $d_y|15x|4$ + $d_z|z\rangle z|45$)

Toy example 2

• Suppose we want to apply $e^{-iH\delta t} \approx I - iH\delta t$, where H is a local Hamiltonian. What can we do?

$$
H = -t \sum_{i} (a_i^{\dagger} a_{i+1} + h.c.) + U \sum_{i} \hat{n}_i \hat{n}_{i+1}.
$$

\n
$$
H = -\frac{t}{2} \sum_{i} (X_i X_{i+1} + Y_i Y_{i+1}) + U \sum_{i} \frac{(Z_i + 1)(Z_{i+1} + 1)}{4}.
$$

\n
$$
\sum_{i} Y_{i} Z_i
$$

\n
$$
H = \sum_{i} \hat{\alpha}_i P_i
$$

\n
$$
H = \sum_{i} \hat{\alpha}_i P_i
$$

\n
$$
P_{i} \sum_{i} \text{ tensor product of } \hat{\beta} \text{ and } P
$$

\n
$$
\text{Cov}(X_i \otimes Y_i \otimes Z_i)
$$

\n
$$
= -\frac{1}{2} \sum_{i} (X_i X_{i+1} + Y_i Y_{i+1}) + U \sum_{i} \frac{(Z_i + 1)(Z_{i+1} + 1)}{4}.
$$

 $(1|P\rangle |F\rangle = |P\rangle P |F\rangle$

Hamiltonian Simulation

- Suppose we want to apply $e^{-iH\delta t}$, where H is a local Hamiltonian and the norm of $H\delta t$ is ≈ 0 . What can we do?
- A: Taylor expansion! [Berry, Childs, Cleve, Kohtari, and Somma (2014)]

- SELECT is an important subroutine used in modern quantum algorithms.
- Think of it as a "lookup table." \bullet
- We will see this subroutine again, later in the course.

$$
\{P_{1}, R, \dots P_{n}\}
$$

\n $|K \rangle |W\rangle \longrightarrow SELET |K\rangle |Y\rangle$
\n \uparrow
\n

$$
\bigcup |p\rangle \, |\Psi\rangle \, = \, |p\rangle \, P \, |\Psi\rangle
$$

PREPARE

- PREPARE is another important subroutine.
- In the context of the Hamiltonian simulation, this prepares the state that encodes the coefficients of the Hamiltonian.
- We will see this subroutine again, later in the course.

$$
\sum_{p} d_{p} |p\rangle
$$
\n
$$
P_{p} = \sum_{k=1}^{m} d_{k} |k\rangle
$$
\n
$$
S ELE(T |k\rangle |W) = |k\rangle P_{k} |W\rangle \qquad [P_{n, m} P_{n} Y)
$$

SELECT + PREPARE

• With these two, we can implement the desired operation.

$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2} R_{k}
$$
\n
$$
m_{2} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2} R_{k}
$$
\n
$$
m_{3} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{4} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{5} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{6} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{7} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{8} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{9} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1} = \sum_{k=1}^{n} k_{k} \left| \frac{1}{k} \right|^{2}
$$
\n
$$
m_{1
$$

 $\bigg\}$

Why bother with this approach?

 $k=1$

 $\overline{}$

- In the Trotter-based Hamiltonian simulation, there is an inevitable *O*(*poly*(*ϵ*−¹)) scaling in the precision ϵ . $\overline{}$
- Using the LCU approach, one can get a sub-logarithmic scaling in $1/\epsilon$. [Berry, Childs, Cleve, Kohtari, and Somma (2013, 2014)] $l_0\frac{1}{2}(14)/\frac{1}{9}$
- This is especially important for quantum chemistry applications, because they tend to require high-precision calculations.

Summary

- In the Trotter-based Hamiltonian simulation, there is an inevitable *O*(*poly*(*ϵ*−¹)) scaling in the precision ϵ .
- Using the LCU approach, one can get a sub-logarithmic scaling in $1/\epsilon$. [Berry, Childs, Cleve, Kohtari, and Somma (2013, 2014)]
- Using SELECT + PREPARE, we can apply the desired unitary with a nonzero probability.
- However, we haven't discussed how to boost this probability. That will come in the next lecture.